The Vector Decomposition Problem for Elliptic and Hyperelliptic Curves
نویسندگان
چکیده
The group of m-torsion points on an elliptic curve, for a prime number m, forms a two-dimensional vector space. It was suggested and proven by Yoshida that under certain conditions the vector decomposition problem (VDP) on a two-dimensional vector space is at least as hard as the computational Diffie-Hellman problem (CDHP) on a one-dimensional subspace. In this work we show that even though this assessment is true, it applies to the VDP for m-torsion points on an elliptic curve only if the curve is supersingular. But in that case the CDHP on the one-dimensional subspace has a known sub-exponential solution. Furthermore, we present a family of hyperelliptic curves of genus two that are suitable for the VDP.
منابع مشابه
Decomposing Jacobians of Hyperelliptic Curves
Many interesting questions can be asked about the decomposition of Jacobians of curves. For instance, we may want to know which curves have completely decomposable Jacobians (Jacobians which are the product of g elliptic curves) [4]. We may ask about number theoretic properties of the elliptic curves that show up in the decomposition of Jacobians of curves [2]. We would also like to know how ma...
متن کاملBit Security of the Hyperelliptic Curves Diffie-Hellman Problem
The Diffie-Hellman problem as a cryptographic primitive plays an important role in modern cryptology. The Bit Security or Hard-Core Bits of Diffie-Hellman problem in arbitrary finite cyclic group is a long-standing open problem in cryptography. Until now, only few groups have been studied. Hyperelliptic curve cryptography is an alternative to elliptic curve cryptography. Due to the recent crypt...
متن کاملHyperelliptic Curve Cryptography
The use of elliptic-curve groups in cryptography, suggested by Miller [1] and Koblitz [2] three decades ago,provides the same level of security for the Discrete Logarithm Problem as multiplicative groups, with much smallerkey sizes and parameters. The idea was refined two years later by Koblitz, who worked with the group formed bythe points of the Jacobian of hyperelliptic curve...
متن کاملA Study of Hyperelliptic Curves in Cryptography
Elliptic curves are some specific type of curves known as hyper elliptic curves. Compared to the integer factorization problem(IFP) based systems, using elliptic curve based cryptography will significantly decrease key size of the encryption. Therefore, application of this type of cryptography in systems that need high security and smaller key size has found great attention. Hyperelliptic curve...
متن کاملElliptic curves with weak coverings over cubic extensions of finite fields with odd characteristic
In this paper, we present a classification of elliptic curves defined over a cubic extension of a finite field with odd characteristic which have coverings over the finite field therefore subjected to the GHS attack. The densities of these weak curves, with hyperelliptic and non-hyperelliptic coverings, are then analyzed respectively. In particular, we show, for elliptic curves defined by Legen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2005 شماره
صفحات -
تاریخ انتشار 2005